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Abstract—When a mobile robot is deployed in a field environ-
ment, e.g., during a disaster response application, the capability
of adapting its navigational behaviors to unstructured terrains is
essential for effective and safe robot navigation. In this paper, we
introduce a novel joint terrain representation and apprenticeship
learning approach to implement robot adaptation to unstructured
terrains. Different from conventional learning-based adaptation
techniques, our approach provides a unified problem formulation
that integrates representation and apprenticeship learning under
a unified regularized optimization framework, instead of treating
them as separate and independent procedures. Our approach also
has the capability to automatically identify discriminative feature
modalities, which can improve the robustness of robot adaptation.
In addition, we implement a new optimization algorithm to solve
the formulated problem, which provides a theoretical guarantee
to converge to the global optimal solution. In the experiments, we
extensively evaluate the proposed approach in real-world scenar-
ios, in which a mobile robot navigates on familiar and unfamiliar
unstructured terrains. Experimental results have shown that the
proposed approach is able to transfer human expertise to robots
with small errors, achieve superior performance compared with
previous and baseline methods, and provide intuitive insights on
the importance of terrain feature modalities.

I. INTRODUCTION

Over the past several years, autonomous mobile robots have
been more commonly used in unstructured field environments
to address real-world applications, including disaster response,
infrastructure inspection, homeland defense, and subterranean
and planetary exploration [1, 2]. When deployed in an outdoor
field environment, mobile robots need the essential capability
of efficiently navigating through different types of terrains with
a wide variety of characteristics. For example, as illustrated in
Figure 1, when mobile robots perform disaster response tasks
in a post-disaster situation, they are likely to encounter terrains
such as grass, rock, pebble, mud, snow, and a mixture of these
terrain types (e.g., a rocky terrain partially covered by mud and
snow). In addition, the same type of terrains typically exhibits
a variety of characteristics (e.g., different slope and softness).
Such terrains whose types and characteristics cannot be fully
modeled or determined before robot deployment are referred
to as unstructured terrains [3, 4]. The capability of generating
desired navigation behaviors (e.g., velocity control) that adapt
to unstructured terrains is essential for an autonomous mobile
robot to operate in complex field environments.

Given the importance of robot navigation over unstructured
terrains, a large number of terrain classification and adaptation
techniques were implemented [5, 6, 7, 8]. Especially, learning-
based techniques have been attracting increasing attention over
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Figure 1. Motivating scenarios of robot adaptation to unstructured terrains.
When mobile robots operates in a field environment during disaster response,
the robots need the essential capability of navigating over a variety of terrains,
such as grass, rock, snow, pebble, and mud, which often cannot be accurately
structured before onsite robot deployment. In this paper, we propose the TRAL
method to integrate representation learning and apprenticeship learning under
a unified mathematical framework and estimate terrain feature importance to
enable robust robot adaptation to unstructured terrains.

the last few years. For example, unsupervised learning-based
techniques were designed to perform semantic segmentation of
terrains, and then navigational decisions were constructed by a
robot through estimating traversability of unstructured terrains
[9, 10, 11]. In addition, methods based upon terrain classifica-
tion were implemented for mobile robots to reason about the
possibility of traversing uneven terrains [12, 13]. Moreover, to
teach navigational behaviors to robots, apprenticeship learning
(a.k.a., learning from demonstration or imitation learning) was
widely investigated [3, 11, 14] to transfer human expertise in
navigation control to autonomous robots and generate adaptive
behaviors according to given terrains (i.e., terrain adaptation).

Despite of promising performance of the previous methods,
several challenges in robot adaptation to unstructured terrains
have not yet been well addressed. Most existing learning-based
methods focused on either terrain classification or navigation
behavior generation only [15, 16, 17, 18, 19], or treated them
as two separate components in the processing pipeline without
a unified integration [14]. Moreover, previous adaptation tech-
niques either used a single feature to represent terrains [20], or
combined a number of features by simple concatenation [21].
The question of how to automatically estimate the importance
of heterogeneous terrain features (e.g., from exteroperceptive
and proprioceptive sensors) and fuse them together for robust
adaptation has not been well answered.

In this paper, we propose a novel joint terrain representation
and apprenticeship learning (TRAL) approach to enable robot



adaptation to unstructured terrains. Instead of treating terrain
classification and navigational behavior generation as separate
tasks, our approach integrates them into a unified mathematical
formulation under the regularized optimization paradigm. Our
approach learns representations of unstructured terrains, which
are jointly used to classify terrains and perform apprenticeship
learning to generate navigational behaviors (e.g. velocity con-
trol) in the unified formulation. Furthermore, our approach is
able to automatically learn weights of terrain features to create
a multi-modal representation of terrains, by designing sparsity-
induced norms as regularizers in the regularized optimization
paradigm. These weights encode the importance of the terrain
features, thus offering the insight of which terrain features are
most critical for terrain classification and navigation behavior
generation.

The key theoretical novelty of the paper is twofold:
• We propose a novel TRAL method that is able to integrate

representation learning and apprenticeship learning under
a unified mathematical framework, automatically estimate
terrain feature importance, and incorporate heterogeneous
terrain features to enable robot adaptation to unstructured
terrains.

• We develop a new optimization algorithm that efficiently
solves the formulated joint representation and apprentice-
ship learning problem, which holds a theoretical guaran-
tee to converge to the optimal solution.

The remaining of the paper is organized as follows. Related
work is reviewed in Section II. We discuss the formulation of
TRAL for robot adaptation to unstructured terrains in Section
III. The new optimization algorithm is described in Section IV.
Experiments are presented in Section V. Finally, we conclude
the paper in Section VI.

II. RELATED WORK

This section provides a review of related research on terrain
classification and robot adaptation, and identifies key research
challenges to be addressed in this paper.

A. Terrain Classification and Characterization

Terrain classification and characterization aims at extracting
terrain features and associating them with terrain categories.
Much of earlier methods was designed for larger vehicles and
the characterization process was typically manual. There was
an amount of research on Terramechanics [22], the guidance
of autonomous vehicles through rough terrains. Similarly, Pre-
planning was used for speed selection [23], e.g., for vehicles
used in the DARPA Grand Challenge, to address the problem
of unstructured terrain navigation through fixing the optimal
speed for each terrain type by collecting data for months. [24]
generated digital terrain maps and then fitted a Gaussian model
to classify terrains. [25] employed terrain cohesion and internal
frictional angle obtained from a variety of terrains to perform
terrain characterization.

In learning-based methods, terrain classification was usually
performed by learning from terrain data in a regressive manner.
For example, [26] designed a feed forward neural network on

terrain images to classify terrain types. Motivated by the need
to recognize visual terrain features that impact mobility, [27]
used Hidden Markov Models to learn terrain features and an
SVM classifier to identify terrain types. [15] used a series of
sensors to measure robot vibrations on terrains to successfully
classify terrains. [28] used a color-based classification to label
obstacles based on terrain classes and carried out appropriate
navigational behaviors.

Previous methods either used a single feature modality or a
combination of features to represent terrains, and the problem
of estimating the importance of feature modalities has not been
well addressed yet, especially in the context of apprenticeship
learning for robot terrain adaptation. Also, previous methods
generally considered terrain classification and characterization
as a preprocessing procedure for subsequential reasoning such
as navigation planning.

B. Robot Adaptation

In the area of robot adaptation, high-level behavioral models
were implemented to address the problem of robot adaptation
in general [29, 30, 31]. Similarly, case-based reasoning [32]
techniques were developed to make robots to adapt in dynamic
environments [33, 34]. Many model-based approaches aimed
at learning a single global model using function approximators,
such as the Gaussian processes [35, 36] and neural networks
[37]. Probabilistic Gaussian methods [38] were implemented
to learn terrain models and update the models efficiently using
sparse approximation. One of the key challenges of deploying
such models is due to the difficulty of learning a global model
that is accurate for the entire state space. Several approaches
[39, 40] were developed to learn accurate local models instead
of learning a global model. These techniques have acceptable
local performance and allow for iterative local improvements
of the policy, but they may not be feasible to be applied to an
unexperienced domain. Recently, online learning approaches
[41, 42] were also used to iteratively update model parameters
during task execution. Although this online learning paradigm
is widely used with robots operating in evolving environments,
the effectiveness of the methods in the case of sudden change
of terrain features is questionable.

For the research problem of robot adaptation to terrains, sev-
eral approaches attempted to generate autonomously-adaptable
dynamic maneuvering using a neural system model in simula-
tions [43] and operational robots [44, 45]. Recently, methods
based upon self-supervised learning [46, 9] were implemented
to navigate in a minimal collision environment by maintaining
minimal traversal and bumper history evaluations. [47] applied
an array of inertial and ultrasonic sensors to calculate features
of soil properties and carry out terrain adaptation. In the need
for human-like operation and navigation [48], [11] used visual
perception data and inverse optimal control trained with human
supervision to learn to imitate expert navigation behaviors. By
considering speed as an important factor for robot navigation,
[49] presented a method for trading progress and velocity with
respect to environment characteristics.



Given the promise of the previous learning-based techniques
for robot adaptation to terrains, almost all existing approaches
treated behavior generation and terrain classification as sepa-
rate procedures, with no principled integration. Different from
previous methods, our proposed approach explicitly addresses
this challenge through integrating representation learning and
apprenticeship learning under the same theoretical framework
to perform joint terrain classification and behavior generation
for terrain adaptation.

III. APPROACH

In this section, we introduce the novel TRAL approach that
formulates robot adaptation to unstructured terrains as a joint
representation and apprenticeship learning problem, from the
unified regularized optimization perspective. An illustration of
the TRAL approach is shown in Figure 2.

Notations: Matrices are denoted as boldface capital letters,
and vectors as boldface lowercase letters. Given a matrix M =
{mij} ∈ Rm×n, we refer to its i-th row and j-th column as mi

and mj , respectively. The Frobenius norm of M is defined as
‖M‖F =

√
Σm

i=1Σn
j=1m

2
ij . The `1-norm of a vector v ∈ Rn is

computed by ‖v‖1 = Σn
i=1|vi|. The `2-norm of v is computed

by ‖v‖2 =
√
v>v.

A. Representation Learning for Terrain Classification

We denote a collection of n data instances of terrain features
that are acquired by a robot when traversing a terrain as X =
[x1, . . . ,xn] ∈ Rd×n, where xi ∈ Rd denotes a feature vector
of length d. We represent terrain types associated with X as
Z = [z1, . . . , zn] ∈ Rc×n, where zi ∈ Zc is an indicator
vector with each element zij ∈ {0, 1} indicating whether the
i-th data instance of features xi has the j-th terrain type, and c
is the number of terrain types. Given X and Z, representation
learning for terrain classification can be simply formulated as
an optimization problem [50, 51]:

min
V
‖V>X− Z‖2F (1)

where V ∈ Rd×c is a weight matrix with vij representing the
importance of the i-th element in a feature vector with respect
to the j-th terrain type. The loss function parameterized by V
in Eq. (1) models the squared error of utilizing the weighted
features to represent the terrain types.

When the terrain features are computed by different feature
extraction techniques and/or from different sensors, the feature
vector contains multiple feature modalities, with each modality
including features computed by one technique from one sensor.
Then, each feature vector xi exhibits a multi-modal structure
xi = [(x1

i )>, . . . , (xm
i )>]> ∈ Rd, where m is the number of

feature modalities in the vector. If dj is the length of the j-th
feature modality, we have d = Σm

j=1dj .
Because different terrain features typically capture different

characteristics of unstructured terrains (e.g., color, smoothness,
and roughness) and often contribute differently toward terrain
classification, it is essential to identify most descriptive feature
modalities when multiple modalities are used together. In order

to enable this capability, we develop a norm to regularize the
weight matrix V [52]:

‖V‖R =

c∑
i=1

m∑
j=1

‖vj
i ‖2 =

c∑
i=1

m∑
j=1

√√√√ dj∑
k=1

(
vjik

)2
(2)

where vj
i ∈ Rdi represents the weight vector of terrain features

in the i-th modality with respect to the j-th terrain type. Since
‖V‖R uses the `2-norm within each modality and the `1-norm
among modalities with respect to each terrain type, it enforces
sparsity between modalities to identify the most discriminative
feature modalities. That is, if a modality is not discriminative
to represent the terrains for terrain classification, the weights
of terrain features in this modality are assigned with zeros (in
ideal case, usually they are small values close to 0); otherwise,
the weights have big values. The effect of the norm ‖V‖R is
illustrated in Figure 2.

Then, representation learning from multi-modal features for
terrain classification is formulated as the following regularized
optimization problem:

min
V
‖V>X− Z‖2F + λ1‖V‖R (3)

where λ1 ≥ 0 is a trade-off hyper-parameter applied to balance
the loss function and the regularization term.
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Figure 2. Illustration of the proposed TRAL approach for joint represen-
tation and apprenticeship learning under the unified regularized optimization
framework, with the regularization terms ‖V‖R and ‖VU‖A to identify the
discriminative feature modalities.

B. Formulation of Joint Representation and Apprenticeship
Learning for Unstructured Terrain Adaptation

Apprenticeship learning [48] is one of the most widely used
learning-based paradigms to transfer human expertise to robots
through directly expert demonstration, which can be viewed as
the learning of a projection from observation or feature space
into behavior space, e.g., by probabilistic [53] or optimization-
based [14, 54] approaches.

Our goal in this paper is to achieve apprenticeship learning
while retaining the advantage of discriminative features offered
by representation learning. The theoretical novelty of the paper
is that we introduce a principled integration of representation
and apprenticeship learning in a unified formulation under the



mathematical framework of regularized optimization, which
enables joint terrain classification and behavior generation.

Formally, given expert demonstrations on behavior controls
Y = [y1, . . . ,yn] ∈ Rr×n (e.g., velocity, motor torque, and
consumed power) that are associated with terrain features X
during robot navigation, where r is the number of controls we
want to learn for behavior generation, we formulate joint rep-
resentation and apprenticeship learning for terrain adaptation
as a unified regularized optimization problem:

min
V,U

‖V>X− Z‖2F + ‖(VU)>X−Y‖2F
+λ1‖V‖C + λ2‖VU‖A (4)

where λ2 is a tradeoff hyper-parameter. The new loss function
(i.e., the 2nd term in Eq. (4)) encodes the difference between
the learning model and expert demonstrations, in order to learn
the projection from multi-modal feature space to robot behav-
ior space. This loss function is parameterized by VU ∈ Rd×r,
which first projects input multi-modal terrain features X into
a more discriminative space V>X (parameterized by V from
representation learning), and further projects the representation
space into the robot behavior space U>V>X (parameterized
by U ∈ Rc×r for apprenticeship learning).

Because the output of the proposed joint learning approach
is to generate robot behaviors, we also want our representation
learning to learn discriminative terrain features that can better
decide robot navigation behaviors. Therefore, we design a new
norm for VU, which is mathematically defined as:

‖VU‖A =

m∑
j=1

‖VjU‖F (5)

where Vj ∈ Rdj×c is the block of V that includes weights of
terrain features belonging to the j-th modality. This norm can
be directly integrated into our objective function in Eq. (4) as
a regularization term over VU, as demonstrated in Figure 2.
This regularization enforces sparsity among feature modalities
with respect to all robot behaviors, thus facilitating identifying
discriminative features for robot behavior generation.

After solving the formulated regularized optimization prob-
lem in Eq. (4) based on Algorithm 1, we can obtain the optimal
V∗ and U∗. When a new multi-modal terrain feature vector
xo ∈ Rd is acquired by a robot during execution, the robot’s
navigation behaviors can be determined by:

yo = (V∗U∗)>xo (6)

which incorporates considerations of both representation learn-
ing and apprenticeship learning.

Different from conventional learning-based robot adaptation
techniques [11, 12, 14], TRAL provides a unified formulation
that integrates representation and apprenticeship learning un-
der the same theoretical framework, instead of treating them
as separate and independent procedures. Moreover, different
from most existing apprenticeship learning methods that apply
a single feature modality only [54] or simple feature concate-
nation [14], one of the TRAL’s advantages is its capability to

Algorithm 1: An iterative algorithm to solve the formu-
lated regularized optimization problem in Eq. (4)

Input : X,Y,Z
1 Let t = 1. Initialize V(t) by solving min

V
‖V>X− Z‖2F

2 Initialize U(t) by solving min
U
‖(VU)>X−Y‖2F

3 while not converge do
4 Calculate the block diagonal matrix D(t+ 1), where

the i-th diagonal element of D(t+ 1) is
1

2‖vi(t)‖2
Ii

5 Calculate the block diagonal matrix D̂(t+ 1), where

the j-th diagonal element is
1

2‖VjU(t)‖F
Ij

6 For each
vi(1 ≤ i ≤ c) = (XX> + λ1D + λ2D̂)−1X(zi)

>

7 For each
ui(1 ≤ i ≤ c) = (V>XX> V + λ2V

>V)−1Xyi

8 t = t+ 1

Output: V = V(t) ∈ <d×c and U = U(t) ∈ <c×r

automatically identify discriminative feature modalities, which
can improve the robustness of robot adaptation to unstructured
and unfamiliar terrains. Also, the weights learned by TRAL
provide insights for intuitive analysis and future integration of
heterogeneous terrain features for robot adaptation to unstruc-
tured terrains.

IV. OPTIMIZATION ALGORITHM

The second theoretical novelty of this paper is the design of
an optimization algorithm to solve the formulated regularized
optimization problem in Eq. (4). Although the problem in Eq.
(4) is convex, it is challenging to solve using traditional gradi-
ent descent based solvers due to the non-smooth regularization
terms and due to the dependency of the two loss functions.

To solve the formulated problem, we compute the derivative
of Eq. (4) with respect to the columns of V and set it to zero,
while assuming U to have a fixed value:

XX>vi −X(zi)
> + λ1Dvi + λ2D̂vi = 0 (7)

where D is a diagonal matrix with the i-th diagonal element

as
I

2‖vi‖2
, and D̂ represents a block diagonal matrix with the

j-th block computed by
I

2‖VjU‖F
. Then, we obtain:

vi = (XX> + λ1D + λ2D̂)−1X(zi)
> (8)

Fixing the value of V, to compute U, we take the derivative
of Eq. (4) with respect to the columns of U and set it to zero:

V>XX> Vui −V>X(yi)
> + λ2V

>Vui = 0 (9)

Then we obtain:

ui = (V>XX> V + λ2V
>V)−1Xyi (10)

Since both D and D̂ are dependent on V, they are unknown
parameters that we need to estimate. Accordingly, we develop



an iterative algorithm to solve the formulated problem, which
is described in Algorithm 1.

As follows, we provide a theoretical analysis of Algorithm
1. We first show a lemma cited from Nie et al. [55]:

Lemma 1: For any two given vectors v and ṽ, the follow-
ing inequality relation holds:

‖ṽ‖2 −
‖ṽ‖22
2‖v‖2

≤ ‖v‖2 −
‖v‖22
2‖v‖2

From Lemma 1, we can derive the following corollary:
Corollary 1: For given matrices M and M̃ , the following

inequality relation holds:

‖M̃‖F −
‖M̃‖2F
2‖M‖F

≤ ‖M‖F −
‖M‖2F
2‖M‖F

Then, we prove our algorithm’s convergence as follows:
Theorem 1: Algorithm 1 iteratively decreases the value of

the objective function in Eq. (4) and converges to the global
optimal solution.

Proof: According to Step 4 of Algorithm 1, we obtain:

V(t+ 1) = min
V
‖V>X− Z‖2F (11)

+λ1TrV
>D(t+ 1)V + λ2TrV

>D̂(t+ 1)V

also from Step 5 of Algorithm 1, we obtain:

U(t+ 1) = min
U
‖(VU)>X−Y‖2F (12)

+λ2TrU
>V>(t+ 1)V(t+ 1)U

Then, we can derive that

J (t+ 1) + F(t+ 1)

+λ1TrV
>(t+ 1)D(t+ 1)V(t+ 1) (13)

+λ2TrU
>(t+ 1)D̂(t+ 1)U(t+ 1)

≤ J (t) + F(t) + λ1TrV
>(t)D(t+ 1)V(t)

+λ2TrU
>(t)D̂(t+ 1)U(t),

where J (t) is given as ‖V>X(t) − Z‖2F and F(t) as
‖(VU)

>
X(t)−Y‖2F + λ2TrU

>V>(t)V(t)U.
After substituting the definition of D and D̂, we obtain

J (t+ 1) + F(t+ 1) + λ1

c∑
i=1

m∑
j=1

‖vj
i (t+ 1)‖22

2‖vj
i (t)‖2

+λ2
‖V(t+ 1)U(t+ 1)‖2F

2‖V(t)U(t)‖F

≤ J (t) + F(t) + λ1

c∑
i=1

m∑
j=1

‖vj
i (t)‖22

2‖vj
i (t)‖2

(14)

+λ2
‖V(t)U(t)‖2F
2‖V(t)U(t)‖F

From Lemma 1, we can derive:
c∑

i=1

m∑
j=1

‖vj
i (t+ 1)‖2 −

c∑
i=1

m∑
j=1

‖vj
i (t+ 1)‖22

2‖vj
i (t)‖2

≤
c∑

i=1

m∑
j=1

‖vj
i (t)‖2 −

c∑
i=1

m∑
j=1

‖vj
i (t)‖22

2‖vj
i (t)‖2

, (15)

and from Corollary 1, we can derive:

‖V(t+ 1)U(t+ 1)‖F −
‖V(t+ 1)U(t+ 1)‖2F

2‖V(t)U(t)‖F

≤ ‖V(t)U(t)‖F −
‖V(t)U(t)‖2F
2‖V(t)U(t)‖F

. (16)

Adding Eq. (13)-(16) on both sides, we obtain:

J (t+ 1) + F(t+ 1) + λ1

c∑
i=1

m∑
j=1

‖vj
i (t+ 1)‖2 (17)

+λ2‖V(t+ 1)U(t+ 1)‖A

≤ J (t) + F(t) + λ1

c∑
i=1

m∑
j=1

‖vj
i (t)‖2 + λ2‖V(t)U(t)‖A

Eq. (17) decreases the value of the objective function in each
iteration. Because our objective function is convex, Algorithm
1 converges to the global optimal solution of the formulated
regularized optimization problem in Eq. (4).

Complexity analysis. Since the objective function in Eq. (4)
is convex, Algorithm 1 converges very fast. In each iteration
of Algorithm 1, it is trivial to compute Steps 4 and 5. We can
compute Steps 6 and 7 by solving a system of linear equations,
with a quadratic complexity.

V. EXPERIMENTS

This section discusses the experiment setup, present imple-
mentation details, and provides an analysis of our experimental
results and comparison with other methods.

A. Experiment Setup and Dataset

In the experiments, a Clearpath Jackal mobile robot is used
to navigate over a variety of unstructured terrains. In order to
collect heterogeneous multi-sensory data that can be utilized to
improve terrain representations, the mobile robot is equipped
with multiple diverse proprioceptive and exteroceptive sensors.
A structured-light camera is applied as an exteroceptive sensor
to capture 3D colored point clouds of unstructured terrains in
front of the robot with a frame rate of 30 Hz. Proprioceptive
sensors are also installed on the robot to measure its internal
information, including wheel odometry, motor speed, inertial
measurement unit (IMU) measurement, power consumption,
and battery status. The data frame rate from the proprioceptive
sensors varied from 5–100 Hz. Linear interpolation based on
data time-stamps is performed to ensure data frame rate to be
consistent at 30 Hz. All of these data sources are used together
as the input to terrain adaptation approaches for evaluation and
comparison.

In addition, expert controls of the mobile robot are recorded
as demonstrations of robot behaviors with the goal to navigate
the mobile robot over unstructured terrains in straight lines as
quickly as possible while maintaining safety (e.g., no flipping
or crushing). The recorded demonstrations are utilized as the
input to apprenticeship learning-based methods for training.

In the experiments, five types of unstructured terrains with
various characteristics are used (shown in Figure 3), including:



• Concrete: The concrete surface exhibits smooth and hard
characteristics. The mobile robot navigates over concrete
floors in an indoor corridor.

• Grass: The grass terrain is less smooth compared to the
concrete terrain, and is characterized by low ruggedness.
The grass terrain often causes small wheel slips when the
mobile robot navigates in places with a greater slope.

• Mud: This type of unstructured terrains has special char-
acteristics in terms of roughness. Muddy ground surface
is wet and typically soft, and can produce a lot of slips in
robot motion. Mud terrains may also consist of weathered
leaves and wood chips.

• Pebble: The pebble terrain is rough and characterized by
small rocks, which we refer to as pebbles. The roughness
requires a robot to navigate slowly and also results in rel-
atively high power consumption. During demonstration,
the robot is operated by human experts in a way to avoid
sudden jerks, which is desirable in scenarios when a robot
operates with fragile equipment.

• Rock: The rock terrain consists of larger rocks. This is the
most challenging terrain type used for robot navigation
in our experiments. The experts need to carefully control
the robot and make detours to ensure safety of the mobile
robot.

RockGrass PebbleMudConcrete

Figure 3. Instances of the five terrain types used in the experiments. The
color images are observed by the camera installed in front of the mobile robot
when navigating over these unstructured terrains.

Experiments of robot navigation are performed twenty times
on each of the five unstructured terrain types. Each experiment
lasts for a period of 10-25 seconds of an expert operating the
mobile robot to navigate over a particular terrain type. In total,
the experiments consist of 4000 data instances. All instances
are organized into a dataset, which contains the heterogeneous
multi-sensory data obtained by the robot during navigation on
unstructured terrains, as well as the associated demonstrations.

B. Implementation

From the multi-sensory data obtained by robot sensors, com-
monly adopted terrain features are extracted. For exteroceptive
data from depth and color images, real-time feature extraction
techniques, including Histogram of Oriented Gradients (HOG)
[56], color descriptors, and Local Binary Patterns (LBP) [57],
are used to compute visual features of the terrains from both
color and depth images. The extracted HOG, Color and LBP

features capture different visual characteristics of the terrains.
Additionally, the point cloud data collected by the color-depth
sensor is used to compute Elevation Maps based on grids [58]
to discretely represent the grid-wise elevation and variance of
the unstructured terrain. 3D point clouds with transformation
and wheel odometry data are utilized to form the grid-based
local elevation map. Normal vector maps and variance maps
are also calculated based upon the generated elevation map of
unstructured terrains. The proprioceptive sensor data including
IMU and wheel odometry, are used together with the visual
and elevation features to form a feature vector that is used as
the input to our TRAL approach.

We implement four versions of the TRAL approach. First,
we set λ1 and λ2 in Eq. (4) to 0, which performs joint terrain
classification and robot behavior generation but cannot identify
discriminative features. Then, we set λ1 = 0 and λ2 = 0.1 to
identify discriminative features only useful for terrain classifi-
cation. In addition, we assign λ1 = 0.1 and λ2 = 0 to identify
discriminative features only useful for behavior generation.
Finally, the full version of the proposed TRAL approach is
implemented with λ1 = λ2 = 0.1, which identifies features
that contribute to the joint terrain classification and behavior
generation. We observe that TRAL shows stable performance
when λ1, λ2 ∈ (0.05, 5). The TRAL approach is implemented
in Linux on the Jackal robot’s onboard computer with an i5
2.5 GHz CPU and 8G memory.

We also compare the TRAL appraoch with previous appren-
ticeship learning methods used for robot adaptation, including
Learning from Demonstration (LfD) based upon probabilistic
graphical models [59], Sequence-based Multi-modal Appren-
ticeship Learning (SMAL) [14] that implements robot adapta-
tion based upon optimization-based state perception and MDP-
based robot decision making, and an imitation learning method
using optimization-based multiclass classification [54] with no
representation learning (NoChar).

C. Result on Familiar Terrains

In this set of experiments, we evaluate the proposed TRAL
approach’s performance when the mobile robot navigates over
familiar unstructured terrains, in which the terrain types have
been experienced by the robot during the training period. The
robot is trained using terrain features and expert demonstra-
tions collected in all five types of unstructured terrains used,
and then tested using terrain features only from the five types
of terrains. In order to evaluate how well human expertise is
transferred to a mobile robot in terms of ground speed, which
is viewed as one of the most critical performance metrics that
indicates how fast a navigation task can be completed by the
robot [23, 60], we use the Root Mean Square Error (RMSE) as
the metric to measure the magnitude of deviation of navigation
behaviors generated by apprenticeship learning methods from
the expert controls. Although RMSE provides the magnitude
of deviation, it cannot present the ratio of deviation, comparing
with the expert control. Therefore, we also use error ratio (ER),
defined as the average of the ratio of the deviation magnitude
over the control magnitude, in order to measure the percentage
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Figure 4. Quantitative results of RMSE on ground velocity obtained by TRAL in the scenarios of navigation over familiar unstructured terrains. Comparison
with previous apprenticeship learning methods and our baseline methods is also presented. The results of each method over each type of terrains are presented
as a boxplot that depicts the distribution of the results from all testing instances based on a five number summary (i.e., minimum, first quartile, median, third
quartile, and maximum).

Table I
MEAN AND VARIANCE OF RMSE AND ER ON GROUND VELOCITY
OBTAINED BY TRAL AND PREVIOUS/BASELINE METHODS OVER

FAMILIAR UNSTRUCTURED TERRAINS.

Approach RMSE (m/s) ER (%)
LfD [59] 0.39 (±0.20) 21.35 (±10.16)

SMAL [14] 0.34 (±0.18) 12.5 (±10.10)
NoChar [54] 0.17 (±0.08) 10.75 (±4.12)
λ1,2 = 0 0.13 (±0.05) 7.48 (±4.96)
λ1 = 0 0.11 (±0.04) 5.33 (±3.40)
λ2 = 0 0.08 (±0.04) 3.40 (±2.41)
TRAL 0.05 (±0.03) 2.41 (±1.76)

of deviation from the expert controls. For both RMSE and ER,
a smaller value indicates a better performance.

The quantitative result obtained by our proposed approach
is demonstrated in Figure 4 in the scenario of navigation over
each of the familiar unstructured terrains, using a boxplot that
displays the distribution of the results from all testing instances
based on a five number summary (i.e., minimum, first quartile,
median, third quartile, and maximum). The overall mean and
variance of RMSE and ER on ground velocity obtained by our
TRAL approach are summarized in Table II. TRAL achieves
the RMSE of 0.05± 0.03 m/s, which shows the magnitude of
deviation is 5 cm/s from expert control on average. The error
rate ER demonstrates that the difference between the generated
control and expert control is 2.41% with a variance of 1.67%
for robots navigating over familiar terrains.

Quantitative comparisons with several previous approaches
and baseline methods are demonstrated in Figure 4 using the
boxplot graph and comparisons of the overall performance are
summarized in Table I. It is observed that the previous appren-
ticeship learning methods tested in our experiment, including
LfD, SMAL, and NoChar obtain a larger deviation magnitude
and percentage. A likely reason that explains this phenomenon
is that they cannot perform representation learning to identify
discriminative terrain features. The raw feature vectors directly
computed from the sensor measurements are noisy, which can
decrease the performance of navigational behavior generation.
Since our approach combines two loss functions to perform a
joint optimization for both representation and apprenticeship

learning, even without applying the two regularization norms,
the version of our approach with λ1,2 = 0 is able to build
good representations to improve the performance of behavior
generation. When regularization terms are used to promote
modality sparsity (i.e., with non-zero λ1 or λ2), these versions
of our approach can find more discriminative features toward
terrain classification or behavior generation, which can further
reduce the deviation. When both regularization norms are used
to learn terrain representations toward both terrain classifica-
tion and navigational behavior generation, the complete TRAL
approach obtains superior performance on both RMSE and ER
over the previous methods.

D. Result on Unfamiliar Unstructured Terrains

In this set of experiments, we evaluate TRAL’s performance
when the mobile robot navigates over unfamiliar unstructured
terrains, in which the terrain type that the robot navigates over
has not been experienced during training. The robot is trained
using terrain features and expert demonstrations collected in
four categories of the unstructured terrains, and then evaluated
using the fifth terrain type that has not been used in the training
period. For example, Figure 5(c) demonstrates the results from
the scenario that the robot is trained using data from concrete,
grass, pebble and rock terrain types, and evaluated on the mud
terrain what is not experienced by the robot in training.

The RMSE results obtained by TRAL and comparisons with
previous and baseline techniques on each type of terrains that
are not familiar to the robot are demonstrated in Figure 5. The
overall performance of TRAL and other methods are presented
in Table II. When the robot navigates over unfamiliar terrains,
we observe phenomena that are similar to the results obtained
when it navigates on familiar terrains: apprenticeship learning
approaches without using representation learning do not work
well; integrating the representation and apprenticeship learning
decreases the errors; and the proposed regularization terms can
further increase the performance. The complete TRAL method
still obtains the best performance over other methods, mostly
because of its capability of identifying the most discriminative
terrain features that can generalize well to unfamiliar scenar-
ios. On the other hand, since unfamiliar terrains are not seen in
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Figure 5. Quantitative results of RMSE on ground velocity obtained by TRAL in the scenarios of navigation over unfamiliar unstructured terrains. Comparison
with previous apprenticeship learning methods and our baseline methods is also presented.

Table II
MEAN AND VARIANCE OF RMSE AND ER ON GROUND VELOCITY
OBTAINED BY TRAL AND PREVIOUS/BASELINE METHODS OVER

UNFAMILIAR UNSTRUCTURED TERRAINS.

Approach RMSE (m/s) ER (%)
LfD [59] 0.35 (±0.21) 33.15 (±19.59)

SMAL [14] 0.29 (±0.19) 29.35 (±16.80)
NoChar [54] 0.23 (±0.07) 20.73 (±6.26)
λ1,2 = 0 0.16 (±0.05) 22.82 (±6.97)
λ1 = 0 0.11 (±0.03) 14.22 (±7.52)
λ2 = 0 0.08 (±0.04) 13.14 (±4.56)
TRAL 0.06 (±0.03) 7.45 (±3.89)

the training period, all approaches evaluated in this case exhibit
higher errors (i.e., higher RMSE and ER values) comparing to
the results from the situations when robots navigate on familiar
unstructured terrains.

E. Discussion

The TRAL approach offers the desirable ability to automat-
ically estimate the importance of feature modalities for terrain
classification and behavior generation. The results of modality
importance averaged from both familiar and unfamiliar exper-
imental scenarios are demonstrated in Figure 6. It is observed
that two feature modalities, i.e., IMU and terrain variance, are
most discriminative in determining both terrain types and robot
navigational behaviors. Intuitively, both feature modalities can
be considered to contain complementary information because
the IMU data is greatly affected by and correlated with terrain
variances. Moreover, it is interesting to note that HOG features
are discriminative for classifying the terrain types, but not for
learning robot navigation behaviors. LBP features on the other
hand exhibit the opposite impact. When comparing all visual
features, we observe that features extracted from color images
are generally more discriminative than the features from depth
images. Due to TRAL’s ability to integrate representation and
apprenticeship learning in the unified framework, and due to
the efficiency of our convex optimization formulation, TRAL
is able to achieve high-speed processing on the robot’s onboard
computer. Including the time spent on feature extraction, our
approach obtains a processing rate of 20 Hz. Without feature
extraction, our approach itself achieves a processing speed of
80 Hz on average. This result indicates the runtime advantage

(a) Terrain classification (b) Behavior generation

Figure 6. Normalized importance of terrain feature modalities with respect
to terrain classification and behavior generation.

of our TRAL approach for real-time robotics applications and
its potential to facilitate high-speed mobile robot navigation.

VI. CONCLUSION

In this paper, we present the TRAL approach to address the
research problem of robot adaptation to unstructured terrains.
As a theoretical novelty, TRAL formulates representation and
apprenticeship learning in the unified regularized optimization
framework to perform joint robot learning for terrain classifi-
cation and behavior generation, which also automatically esti-
mates the importance of terrain feature modalities. Our second
theoretical novelty is the design of an optimization algorithm
to solve the formulated problem, which possesses a theoretical
convergence guarantee. The proposed approach is extensively
evaluated using two real-world scenarios in the experiments,
in which a mobile robot navigates over familiar or unfamiliar
unstructured terrains. Experimental results have demonstrated
that TRAL is able to transfer human expertise to mobile robots
with small errors, obtain superior performance compared with
previous and baseline methods, and offer intuitive insights on
the importance of terrain feature modalities.
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terrain adaptation approach using ultrasonic sensors for
legged robots. In Climbing and Walking Robots. 2006.

[48] Brenna D Argall, Sonia Chernova, Manuela Veloso, and
Brett Browning. A survey of robot learning from demon-
stration. Robotics and Autonomous Systems, 57(5):469–
483, 2009.

[49] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The

dynamic window approach to collision avoidance. RAM,
4(1):23–33, 1997.

[50] Zheng Zhang, Yong Xu, Jian Yang, Xuelong Li, and
David Zhang. A survey of sparse representation: algo-
rithms and applications. IEEE Access, 3:490–530, 2015.

[51] Hao Zhang, Fei Han, and Hua Wang. Robust multimodal
sequence-based loop closure detection via structured
sparsity. In RSS, 2016.

[52] Fei Han, Xue Yang, Yiming Deng, Mark Rentschler,
Dejun Yang, and Hao Zhang. SRAL: Shared repre-
sentative appearance learning for long-term visual place
recognition. RA-L, 2(2):1172–1179, 2017.

[53] Sylvain Calinon and Aude Billard. Incremental learning
of gestures by imitation in a humanoid robot. In HRI,
2007.

[54] Nathan Ratliff, J Andrew Bagnell, and Siddhartha S
Srinivasa. Imitation learning for locomotion and manip-
ulation. In Humanoids, 2007.

[55] Feiping Nie, Heng Huang, Xiao Cai, and Chris H Ding.
Efficient and robust feature selection via joint `2, 1-
norms minimization. In NIPS, 2010.

[56] Navneet Dalal and Bill Triggs. Histograms of oriented
gradients for human detection. In CVPR, 2005.

[57] Timo Ahonen, Abdenour Hadid, and Matti Pietikainen.
Face description with local binary patterns: Application
to face recognition. PAMI, (12):2037–2041, 2006.
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