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Abstract: Terrain adaptation is a critical ability for a ground robot to effectively
traverse unstructured off-road terrain in real-world field environments such as
forests. However, the expected or planned maneuvering behaviors cannot always
be accurately executed due to setbacks such as reduced tire pressure. This inconsis-
tency negatively affects the robot’s ground maneuverability, and can cause slower
traversal time or errors in localization. To address this shortcoming, we propose
a novel method for consistent behavior generation that enables a ground robot’s
actual behaviors to more accurately match expected behaviors while adapting to
a variety of complex off-road terrains. Our method learns offset behaviors in a
self-supervised fashion to compensate for the inconsistency between the actual and
expected behaviors without requiring the explicit modeling of various setbacks. To
evaluate the method, we perform extensive experiments using a physical ground
robot over diverse complex off-road terrain in real-world field environments. Ex-
perimental results show that our method enables a robot to improve its ground
maneuverability on complex unstructured off-road terrain with more navigational
behavior consistency, and outperforms previous and baseline methods, particularly
so on challenging terrain such as that which is seen in forests.
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1 Introduction

Figure 1: Off-road environments such as forests
are unstructured and exhibit a variety of character-
istics, including changing terrain types and slopes.
When ground robots are deployed in these environ-
ments, their actual behaviors often do not match
the expected behaviors, e.g., due to wheel slip. The
inconsistency often causes slower traversal time
or errors in robot state estimation. Therefore, the
capability of consistent behavior generation is es-
sential for maneuverability while ground robots
navigate over unstructured off-road terrains.

Over the past several years, autonomous ground
robots have been increasingly deployed in off-
road field environments to address real-world
applications, including disaster response, home-
land defense, and planetary exploration [1, 2, 3].
Field environments are challenging for ground
robots to navigate over because the terrain is un-
structured and cannot be fully modeled before-
hand, as depicted in Fig. 1. Terrain adaptation,
the robot’s ability to adjust its behaviors to per-
ceived terrains, is therefore an essential ability
to traverse over unstructured terrains [4, 5].

Given its importance, robot terrain adaptation
has recently been widely investigated. Previous
learning-based methods can be divided into two
broad categories: terrain classification and ter-
rain adaptation. The first category uses a robot’s
exteroceptive and proprioceptive sensory data to
classify terrain types and estimate traversability
for robot navigation over the terrain [6, 7, 8, 9, 10]. This category also includes techniques that model
terrain complexity for navigation planning [5, 11]. The second category of methods focus on directly
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generating adaptive behaviors according to terrain in order to successfully complete navigation
tasks [5, 12, 13, 14]. Specifically, learning from demonstration (LfD) is widely used to transfer
human expertise to robots in order to achieve human-level robot navigational control [15, 14, 16].

However, the expected navigational behaviors generated by previous approaches cannot always
be executed accurately by a ground robot when traversing over unstructured off-road terrain, i.e.,
the actual and expected behaviors may not be consistent. This inconsistency is mainly caused by
setbacks [17, 18] that are defined as factors that increase the difficulty for a ground robot to achieve its
expected behaviors. Example setbacks include wheel slip, reduced tire pressure, and heavy payload.
Existing learning-based methods for robot navigation generally ignore these setbacks, which often
leads to the robot not being able to consistently execute the learned behaviors. The challenge of how
to learn consistent navigational behaviors in a self-supervised fashion has not been well addressed.

To address this shortcoming, we develop an approach for consistent navigational behavior generation.
Our approach learns offset behaviors in a self-supervised fashion, allowing the robot to compensate
for the inconsistency between the actual and expected behaviors without explicitly modeling the
setbacks, while also adaptively navigating over changing terrain. In addition, our method is able
to integrate multi-modal features to characterize terrain and estimate the importance of features to
enable terrain-aware ground navigation. This is all implemented in a unified regularized optimization
framework with a theoretical convergence guarantee.

The key novelty of this paper is the introduction of a method to enhance consistent ground maneuver-
ability, which advances the state-of-the-art by enabling a ground robot’s actual behaviors to accurately
match its expected behaviors while adapting to a variety of complex unstructured off-road terrain.
The specific novel contributions include:

• We propose a novel mathematical formulation to generate consistent navigational behaviors
by learning offset behaviors in a self-supervised fashion. We also introduce new regulariza-
tion terms to learn important terrain features from multi-sensory observations and fuse them
together to improve robustness of robot adaptation to unstructured terrain.

• We propose a new optimization algorithm to address the formulated regularized optimiza-
tion problem with dependent variables and non-term regularization terms, which holds a
theoretical guarantee to effectively converge to the global optimal solution.

As an experimental contribution, we provide a comprehensive performance evaluation of learning-
based terrain adaptation methods by designing a set of robot navigation scenarios over a wide variety
of individual and complex unstructured off-road terrains.

2 Related Work

Related research on robot terrain adaptation can be broadly classified into two categories, including
terrain classification and robot adaptation.

Terrain classification methods use sensory data from a robot to classify the terrain. Many earlier
methods were developed to address the specific needs of larger vehicles [19, 20] and the classification
process was typically performed in a manual or pre-selected fashion. Some methods used a pre-
existing terrain map and terrain ruggedness data to achieve high-speed terrain navigation [6, 7, 9, 10,
21, 22]. Learning-based methods are commonly used to classify terrain for navigation. Color-based
terrain classification was performed to generate navigational behaviors by labeling obstacles [23].
More recently, semantic segmentation neural network architectures [24] have been successfully used
to classify off-road terrain [25, 26] and perform robot navigation tasks accordingly. However, these
methods rely on a discrete categorization of terrain types. The methods typically do not characterize
complex unstructured off-road terrain well and cannot directly enable robot adaptation in real-world
environments, where environments have a wide variety of characteristics (as seen in Fig. 1).

Robot adaptation methods focus on enabling robots to intelligently adapt to various unstructured ter-
rain. The general problem of robot adaptation is commonly studied in robotics [27, 28, 29, 30, 31, 32]
using high-level behavior models. Earlier works considered ground speed as the optimization variable
and formulated a method for trading progress and velocity with changing terrain characteristics
[33, 34]. Learning-based methods for terrain adaptation have gained attention because of their
effectiveness and flexibility [35]. Early work addressed terrain adaptation from the perspective of
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online learning that updates model parameters in the execution phase [36, 37, 38]. However, these
methods lacked the ability to quickly adapt to sudden terrain changes. Accordingly, methods were
developed that generate navigational behaviors using open-loop controllers according to the predicted
terrain characteristics [39]. Methods to mimic expert controls were also developed aiming to achieve
human-level maneuverability [15, 14]. Recently, navigational affordances are learned from experts for
off-road navigation [40]. External disturbances were also considered in the learning-based methods
[41, 42, 43]. However, these methods often require modeling of robot dynamics or explicit human
demonstrations, and cannot generate consistent ground navigation that adapt to diverse terrains.

3 Approach

Notation: We denote scalars using lowercase italic letters (e.g., m ∈ R), vectors using boldface
lowercase letters (e.g., m ∈ Rp), matrices using boldface capital letters, e.g., M = {mi

j} ∈ Rp×q

with its i-th row and j-th column denoted as mi and mj , respectively. We use boldface capital Euler
script letters to denote tensors (i.e., 3D matrices), e.g., M = {mi(k)

j } ∈ Rp×q×r. Unstacking tensor
M along its height (p), width (q) and depth (r) provides slices of matrices Mi ∈ Rq×r, Mj ∈ Rp×r

and M(k) ∈ Rp×q , respectively [44].

3.1 Problem Formulation for Terrain-Aware Navigation

As a robot traverses over terrain, at each time step, we extract multi-modal features from observations
acquired from multiple sensors installed on the robot including visual camera, LiDAR, and IMU.
We concatenate all features extracted at time step t into a vector and denote it as x(t) ∈ Rd, where
d =

∑m
j=1 d

j and dj is the dimensionality of the j-th feature modality with m as the number of
modalities. We stack features extracted from a sequence of consecutive c time steps into a matrix
and represent it as a terrain feature instance denoted as X = [x(t); . . . ;x(t−c)] ∈ Rd×c. We further
denote the set of n feature instances that are obtained as a robot traverses over various terrains, and
denote this set as a terrain feature tensor X = [X1, . . . ,Xn] ∈ Rd×n×c.

We use Y = [y1, . . . ,yn] ∈ Rr×n to denote the robot’s expected navigational behaviors associated
with X , where yi ∈ Rr is a vector of r behaviors corresponding to Xi. Behaviors are encoded by
the control variables (e.g., linear and angular velocities) that decide the robot’s motion at the present
time t. Due to momentum, a robot often has continuous motion and observations; thus, considering a
history of past c observations can provide more information to generate navigational behaviors at the
present time. Accordingly, we estimate the robot’s behaviors yi using Xi = [x

(t)
i ; . . . ;x

(t−c)
i ], taking

into account the history of c observations. Then, the problem of navigational behavior generation can
be formulated as:

min
W
‖W ⊗3 X −Y‖2F + λ1‖W‖M (1)

where W ∈ Rd×r×c is a weight tensor used to encode the importance of each element in X towards
estimating navigational behaviors. Each tensor element wi(k)

j ∈W denotes the weight of the i-th
terrain feature from the k-th past time step to recognize the j-th behavior type. The operator ⊗
denotes the tensor product and ⊗3 is defined as the tensor product that performs the sum of mode-3
multiplication [44] between feature tensor X and W . In Eq. (1), the tensor product ⊗3 takes each
terrain feature instance Xi ∈ X , and multiplies it with the weight tensor W .

The first term in Eq. (1) is a loss function that encodes the error of using terrain features in X to
estimate the robot behaviors, through the learning model parameterized by W . Furthermore, our loss
function encodes the non-linear nature of robot navigational behavior generation as a linear function
of terrain features X . This can be achieved because: i) for short periods of time (i.e., c = [1, 30]), the
dynamics of the robot do not dramatically change [45, 46] and thus the non-linearity in the robot is
not severe, and ii) with high-dimensional features (e.g., d > 10000), learning non-linear tasks can be
lifted to a linear space [47, 48]. The second term in Eq. (1) is a regularization term named the feature
modality norm and is mathematically defined as:

‖W‖M =

m∑
i=1

‖Wi‖F =

m∑
i=1

√√√√ r∑
j=1

c∑
k=1

(w
i(k)
j )>(w

i(k)
j ) (2)
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where ‖.‖F is the Frobenius norm and Wi ∈ Rb×c is the slice of the matrix obtained by unstacking
the weight tensor W along its height d. The feature modality norm groups together weights within
a feature modality and enforces sparsity among different modalities, thus, identifying the most
descriptive features for behavior generation. This is a critical capability for ground robot navigation
since different features typically capture different characteristics of the unstructured terrains (e.g.,
color, slope, and roughness), and have different effects toward generating navigational behaviors.
The trade-off hyperparameter λ1 in Eq. (1) is used to balance the loss and the regularization term.

The problem formulation in Eq. (1) allows ground robots to adapt their navigational behaviors
according to different terrain features. However, due to setbacks that reduce the effectiveness of
robot navigation, such as wheel slip, heavy payload, and reduced tire pressure [49], the robot’s actual
behaviors may not match the expected behaviors.

3.2 Consistent Navigational Behavior Generation

Figure 2: Overview of our proposed approach.

The key novelty focuses on a principled method
for ground robots to generate consistent naviga-
tional behaviors that adapt to unstructured ter-
rain. As illustrated by Fig. 2, besides generating
terrain-aware expected behaviors, our method
monitors the difference between the actual and
expected navigational behaviors caused by set-
backs, and computes an offset to reduce the dif-
ference. This allows our approach to achieve
consistent robot behaviors without the require-
ment of explicitly modeling all of the setbacks.

Mathematically, we denote the actual behaviors
as A = [a1, . . . ,an] ∈ Rr×n, where ai ∈ Rr denotes the actual behaviors executed by the robot
when observing the i-th terrain feature instance Xi. The actual robot behaviors can be estimated
using a pose estimation technique, e.g., based on SLAM or visual odometry [50]. Setbacks can cause
the robot’s actual behaviors to not match its expected behaviors. This difference in navigational
behaviors over the past c-time steps is computed as E = [(a(t)−y(t)); . . . ; (a(t−c)−y(t−c))] ∈ Rr×c

and the behavior differences for all the instances in X is denoted as a behavior difference tensor
E = [E1, . . . ,En] ∈ Rr×n×c.

We then introduce a loss function to encode consistent behavior generation as follows:

min
U ,W

‖W ⊗3 X + U ⊗3 E −A‖2F + λ1‖W‖M (3)

where U = [U1, . . . ,Ur] ∈ Rr×r×c is a weight tensor with Uj ∈ Rr×c indicates the importance
of behavior differences E towards generating the j-th offset behaviors. Using data from a history
of c time steps allows our method to consider inertia (i.e., resistance to change in behaviors) during
navigation. Mathematically, this implies that U(k), k = 1, . . . , c; has non-zero elements as opposed
to each element in U(k) being 1 at k = 1 and 0 at k 6= 1 when robot inertia is not considered.

The loss function in Eq. (3) models the actual behavior by considering both terrain features X and
the behavior differences E to achieve consistent navigational behaviors. Because of inertia, historical
data from different past time steps may contribute differently towards generating offset behaviors
(e.g., a heavier robot with larger inertia often needs to consider a longer history). Thus, we propose
a new regularization term to explore which time steps in the historical data are more important
for generating the offset behaviors. We name this regularization term the temporal norm, which is
expressed by:

‖U‖T =

c∑
k=1

‖U(k)‖F =

c∑
k=1

√√√√ r∑
j=1

‖u(k)
j ‖22 (4)

where U(k) = [u
(k)
1 , . . . ,u

(k)
r ] ∈ Rr×r is the weight matrix, and u

(k)
j indicates the importance of the

j-th behavior difference a
(k)
j − y

(k)
j from k-the past time step towards generating offset behaviors.

This norm groups together weights for the vector of behavior differences at each time step, and
enforces sparsity between weights at different time steps to identify the most important time steps.
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Algorithm 1: Our algorithm to solve the regularized optimization problem in Eq. (5).
Input :X ∈ Rd×n×c, A ∈ Rr×n, and E ∈ Rr×n×c

Output :The weight tensors W ∈ Rd×r×c and U ∈ Rr×r×c

1 Initialize W ∈ Rd×r×c and U ∈ Rr×r×c;
2 while not converge do
3 Calculate each block diagonal matrix Q(k) with i-th diagonal block given as 1

2‖Wi(k)‖F
Idi ;

4 Compute the matrices W(k) according to Eq. (8);
5 Calculate the block diagonal matrix P with the k-th diagonal block as 1

2‖U(k)‖F
Ir;

6 Compute the matrices U(k) according to Eq. (10);

7 return: W ∈ Rd×r×c and U ∈ Rr×r×c

Using both norms to generate consistent robot navigational behaviors while identifying important
feature modalities and historical time steps, the final objective function becomes:

min
U ,W

‖W ⊗3 X + U ⊗3 E −A‖2F + λ1‖W‖M + λ2‖U‖T (5)

where λ1 ≥ 0 and λ2 ≥ 0 are trade-off hyper-parameters.

After computing the optimal values of the weight tensors W and U according to Algorithm 1, in
the training phase, a robot can apply our self-reflective terrain-aware adaptation method to generate
consistent navigational behaviors during execution. At each time step t0 in the execution phase, the
robot extracts multi-modal features Xt0 from observations obtained from its on-board sensors over
the past c-time steps. Then, the robot also estimates the corresponding actual behaviors (measured
using a pose estimation technique based upon SLAM or visual odometry [50]) and computes the
matrix of behavior differences at time t0 as Et0 . Then our approach can be used by the robot to
generate consistent actual navigational behaviors as:

y = W ⊗3 Xt0 + U ⊗3 Et0 (6)

The first term in Eq. (6) generates the expected navigational behaviors according to the terrain it
traverses, which allows a ground robot to adapt its navigational behaviors to unstructured terrains.
The second term in Eq. (6) provides offset behaviors based on monitoring the difference between
actual and expected behaviors in order to compensate for the setbacks.

4 Optimization Algorithm

The optimization problem in Eq. (5) is challenging to solve because the regularization terms are
not smooth and because the objective function includes dependent variables. Thus, we derive a new
iterative optimization algorithm to obtain the optimal solution to Eq. (5). This algorithm is shown
in Algorithm 1, which provides an alternating minimization algorithm that alternatively updates the
parameter tensors in each iteration until convergence.

To solve for the optimal weight tensor W , we minimize Eq. (5) with respect to W(k) resulting in:

2X(k)(X(k))>W(k) − 2X ⊗3 A+ 2(U ⊗3 E)> ⊗3 X + λ1Q
(k)W(k) = 0 (7)

where each Q(k) ∈ Rdi×di is a diagonal matrix with the i-th diagonal block computed by
1

2‖Wi(k)‖F
Idi and Idi is an identity matrix. Then, we compute each W(k) as:

W(k) =
(
2X(k)(X(k))> + λ1Q

(k)
)−1(

2X ⊗3 A− 2(U ⊗3 E)> ⊗3 X
)

(8)

Because each of the block-diagonal matrices Q(k) are dependent on W and also each slice of matrix
W(k) is dependent on corresponding Q(k), an iterative algorithm is required to compute them.

To compute the optimal U , we calculate the derivative of the objective function in Eq. (5) with respect
to U(k) and set the equation to zero as:

2E(k)(E(k))>U(k) − 2A⊗3 E + 2(W ⊗3 X )> ⊗ E + λ2PU(k) = 0 (9)

5



Figure 3: Individual types of unstructured terrain used in the experiments.

where P ∈ Rr×r is a diagonal matrix with the k-th diagonal block as 1
2‖U(k)‖F

Ir, with Ir being an

identity matrix. Then, we compute each U(k) in a closed-form solution as:

U(k) =
(
2E(k)(E(k))> + λ2P

)−1(
2A⊗3 E − 2(W ⊗3 X )> ⊗ E

)
(10)

This U is then used to calculate W in the next iteration. Similar to Q(k) and W , P and U are
interdependent. Thus, we develop an iterative algorithm to solve the formulated optimization problem,
which is described in Algorithm 1.

Convergence. Algorithm 1 is guaranteed to converge to the global optimal solution to the formulated
regularized optimization problem in Eq. (5). The proof is provided in the supplementary material.

Complexity. As the optimization problem in Eq. (5) is convex, Algorithm 1 converges fast (e.g.,
within tens of iterations only). In each iteration, computing Steps 3 and 5 is trivial. Steps 4 and 6 can
be computed by solving a system of linear equations with quadratic complexity.

5 Experiments

We utilize the Clearpath Husky robot in our field experiments. The robot is equipped with an Intel
Reasense D435 color-depth camera and an Ouster OS1-64 LiDAR. The robot also has a variety of
sensors to measure its internal states, including IMU readings, wheel odometry, motor speed, and
battery status. Linear interpolation is used to get a steady 30 Hz frame rate from all sensors.

To represent unstructured terrain, we implement multiple visual features extracted from color images
to describe different terrain characteristics, including Histogram of Oriented Gradients (HOG) [51]
to describe the shape and Local Binary Patterns (LBP) [52] to describe texture. We also compute
an elevation map [53] from LiDAR data to represent robot-centric grid-wise elevation of the terrain.
During training, expected navigational behaviors are provided by remote control to navigate the robot
over unstructured terrains as fast as possible while maintaining safety. In the training and execution
phases, actual behaviors are estimated from LiDAR-based SLAM [50] as robot pose. We use a
sequence of 15 frames (i.e., c = 15), and λ1 = 0.1 and λ2 = 10 for all experiments. More details on
our implementation and training/testing procedures are provided in the supplementary material.

We compare our approach with several previous state-of-the-art learning-based robot navigation
techniques, including Learning from Demonstration (LfD) for robot navigation [16], multi-modal LfD
(MfD) [54], and Terrain Representation and Apprenticeship Learning (TRAL) [15]. To quantitatively
evaluate the performance of robot navigation, we use four metrics:

• Failure Rate (FR): This metric is defined as the number of times the robot fails to complete
the navigation task across a set of experimental trials. If a robot flips or is stopped by a
terrain obstacle, it is considered a failure. Lower values of FR indicate better performance.

Table 1: Quantitative results based on ten runs for scenarios when the robot traverses over individual
types of unstructured terrain. Successful runs (with no failures) are used to calculate the metrics of
traversal time, inconsistency and jerkiness.

Failure Rate (/10) Traversal Time (s) Inconsistency Jerkiness (m/s3)
Terrain LfD MfD TRAL Ours LfD MfD TRAL Ours LfD MfD TRAL Ours LfD MfD TRAL Ours
Grass 0 0 0 0 17.9 18.2 17.4 17.5 2.82 3.06 1.84 2.11 79.59 81.42 75.18 76.50
Sand 0 1 0 0 15.312.7 15.9 13.1 4.72 4.62 4.67 4.55 71.14 73.74 65.32 64.22

Gravel 0 0 0 0 22.9 24.1 20.4 20.2 4.12 4.63 3.81 3.04 44.95 48.27 40.26 39.48
M.R 1 3 0 0 33.2 36.9 29.4 28.4 7.92 9.59 4.21 2.41 141.48 144.22 113.34111.18
L.R 6 6 2 1 57.855.3 63.4 60.9 24.79 28.50 9.51 7.84 52.55 54.30 49.50 48.36
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Figure 4: Complex unstructured off-road terrains used in the experiments.

• Traversal Time (TT): This metric is defined as the time taken to complete the navigation task
over given terrain. Smaller values of TT indicate better performance.

• Inconsistency: This metric is defined as the error between the expected behavior and the
actual behavior in terms of robot poses (linear position and angular). Lower values of
inconsistency indicate better performance.

• Jerkiness: This metric is defined as the average sum of the acceleration derivatives along all
axes, with lower values indicating better performance. Jerkiness indicates how smooth a
robot can traverse over a terrain. Because state estimation and SLAM methods (e.g., based
on Kalman filters) may assume smooth robot motions, jerkiness is a useful metric.

5.1 Navigating over Individual Types of Unstructured Terrain

In this set of experiments, the robot navigates over individual terrain using off-road tracks. Each
track is made up of one type of terrain and is approximately ten meters long. Five types of terrain are
used in our experiments, which are illustrated in Fig. 3. Our approach is trained on data collected
while the robot is manually controlled by an expert to traverse the terrain. Then, the learned model is
deployed on the robot to autonomously navigate over the terrain. Evaluation metrics for each method
are computed across ten trials on each type of individual terrain track.

The quantitative results achieved by our approach and the comparison to other methods are presented
in Table 1. For simple individual terrains, such as grass and gravel, all methods allow the robot to
successfully traverse over the terrain. However, for more challenging terrain, especially large rocks,
both LfD and MfD have a high failure rate, whereas, TRAL and our approach have a low failure
rate. Our approach only has one failure over the difficult large-rock terrain and outperforms other
tested methods. The presented traversal time is computed by averaging the traversal time across all
successful runs, i.e., it excludes the failed trials captured by the FR metric. It is observed that all
methods have a similar traversal time. In successful runs, both LfD methods show less traversal time
compared to other methods over rocky terrain, although they also have a much higher failure rate.
Thus, the emphasis on high-speed traversal used by both the LfD methods produces an unreliable
system when the robot traverses unstructured off-road terrain in real-world field environments.

Table 1 also presents the quantitative results for the inconsistency and jerkiness metrics. We observe
that both LfD and MfD methods do not perform well and have higher values of inconsistency over
individual types of terrain, especially on the large-rock terrain. TRAL has lower inconsistency and
performs the best over the grass terrain. Our proposed method outperforms the previous approaches
and obtains the lowest averaged inconsistency value. Finally, we also evaluate the tested methods
using the jerkiness metric. An observation is that the medium-rock terrain causes the largest jerkiness
measure. This is because medium-rocks terrain as compared to the large-rocks produce much more
vibrations for even slow maneuvers.

Table 2: Quantitative results for scenarios when the robot traverses over complex unstructured off-road
terrain shown in Fig. 4.

Failure Rate (/10) Traversal Time (s) Inconsistency Jerkiness (m/s3)
Terrain LfDMLfDTRALOurs LfD MLfDTRALOurs LfD MfD TRAL Ours LfD MfD TRAL Ours
Gr.M.R 5 7 2 1 22.0 19.7 27.5 23.1 15.62 17.28 14.54 12.31 65.0180.56 58.36 51.93
Gr.L.R 8 9 3 3 27.2 27.4 29.4 28.8 93.53101.26 68.87 51.16 34.9640.51 28.22 24.55
M.T-I 0 1 0 0 17.9 18.2 19.4 18.9 3.97 5.38 4.91 3.39 72.3783.17 70.36 68.55
M.T-II 5 7 4 5 23.1 18.1 30.2 28.5 93.37 95.47 80.43 78.82 54.1377.49 52.51 47.93
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5.2 Navigating over Complex Off-road Unstructured Terrains

In the second set of experiments, we evaluate our approach when the robot navigates over complex off-
road unstructured terrain. The tracks in these experiments either show transitions between different
terrain types (i.e., grass to large rocks: Gr.L.R, and grass to medium rocks: Gr.M.R) or a mixture of
different terrain types in real off-road environments (i.e., Mixed Terrain I: M.T-I and Mixed Terrain II:
M.T-II), as shown in Fig. 4. In the experiments, no additional training is performed and the previously
trained model from individual types of unstructured terrains is used directly.

Table 2 presents the quantitative results obtained by our approach and the comparison with other
methods. It is observed that each of the methods have a much higher failure rate in general, especially
over the M.T-II and the Gr.L.R terrains. Our approach significantly outperforms LfD and MfD in
terms of failure rate. Similar to the experiments over individual types of terrain, we observe that
both LfD methods have slower traversal time for successful runs, but they have a significantly higher
failure rate. Moreover, LfD and MfD are outperformed with respect to inconsistency and jerkiness,
with MfD performing worst among all tested methods, especially on the jerkiness metric.

Figure 5: Hyperparameter
Analysis.

Figure 6: Seq. length.

Figure 7: Convergence.

Although both TRAL and our method obtain promising performance,
as the main goal is to enhance consistent maneuverability, our approach
obtains an average of 15.83% less on inconsistency over TRAL (with
7.66% less over traversal time, 4.50% less over failure rate, and 4.56%
less on jerkiness). The p-value for inconsistency improvement is 0.004,
indicating that the improvement is statistically significant. This improve-
ment is most likely to be caused by the closed loop feedback, as it is the
biggest fundamental difference between the methods.

5.3 Discussion

Hyperparameter Analysis: The hyperparameters λ1 and λ2 in Eq. (5)
are implemented to balance the loss function and regularization terms.
Fig. 5 depicts how the inconsistency metric changes given varying λ
values based on cross-validation during training. It is observed that
λ1 ∈ (0.1, 10) and λ2 ∈ (1, 10) result in good performance in general.
The best result is obtained when λ1 = 0.1 and λ2 = 10. These values
of hyperparameters are then used for all the experiments.

Dependence on Frame Sequences: Our approach uses a sequence of
historical frames with length c to generate consistent behaviors. Fig.
6 shows the change of the inconsistency metric according to c. It is
observed that our approach generally performs well when c ∈ (15, 20),
and we observe that the inconsistency metric is worst when either a small
number (c < 5) or a big number (c > 30) is used under the sensing
framerate of 30 Hz. These values can be mainly affected by the robot’s
speed and can differ between robotic platforms.

Convergence: Experimental results in Fig. 7 illustrate the fast, mono-
tonically decreasing convergence of Algorithm 1, which validates our
theoretical analysis.

6 Conclusion

In this paper, we introduce a novel approach for consistent behavior generation that enables ground
robots’ actual behavior to more accurately match expected behaviors while adapting to a variety of
unstructured off-road terrain. Our approach learns offset behaviors in a self-supervised fashion to
compensate for the inconsistency between the actual and expected navigational behaviors without
the need to explicitly model various setbacks, and learns the importance of the multi-modal features
to improve the representation of terrain for better adaptation. Our proposed approach is extensively
evaluated in real-world off-road environments. Experimental results have shown that our approach
enables a robot to improve its ground maneuverability when traversing over complex unstructured
off-road terrain with more behavior consistency and smoothness compared to previous methods.
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